2022

  • Hazdra, P., Laposa, A., Šobáň, Z., Voves, J., Lambert, N., Davydova, M., Povolný, V., Taylor, A., & Mortet, V. (2022). Low-resistance ohmic contacts on boron-doped {113} oriented homoepitaxial diamond layers. Diamond and Related Materials, 121, 108797. https://doi.org/10.1016/j.diamond.2021.108797
  • Hazdra, P., Laposa, A., Šobáň, Z., Taylor, A., Lambert, N., Povolný, V., Kroutil, J., Gedeonová, Z., Hubík, P., Mortet, V., (2022). Pseudo-vertical Mo/Au Schottky diodes on {113} oriented boron doped homoepitaxial diamond layers, Diamond and Related Materials, 126, 109088. https://doi.org/10.1016/j.diamond.2022.109088
  • Kroutil, J., Laposa, A., Ahmad, A., Voves, J., Povolny, V., Klimsa, L., Davydova, M., & Husak, M. (2022). A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification. Beilstein Journal of Nanotechnology, 13, 411–423. https://doi.org/10.3762/bjnano.13.34
  • Mares, D., Prajzler, V., Martan, T., & Jerabek, V. (2022). Hybrid polymer–glass planar Bragg grating as a temperature and humidity sensor. Optical and Quantum Electronics, 54(9), 590. https://doi.org/10.1007/s11082-022-04003-0
  • Hrakova, D., Ripka, P., Laposa, A., Novotny, D., Kroutil, J., Povolný, V., Kaman, Ondřej., & Veverka, P. (2022). Inkjet-printed Mn-Zn ferrite nanoparticle core for fluxgate. Journal of Magnetism and Magnetic Materials, 563, 170003. https://doi.org/10.1016/j.jmmm.2022.170003
  • Švanda, J., Kalachyova, Y., Mareš, D., Siegel, J., Slepička, P., Kolská, Z., Macháč, P., Michna, Š., Švorčík, V., & Lyutakov, O. (2022). Smart Modulators Based on Electric Field-Triggering of Surface Plasmon–Polariton for Active Plasmonics. Nanomaterials, 12(19), 3366. https://doi.org/10.3390/nano12193366
  • Prajzler, V., Chlupaty, V., & Neruda, M. (2022). Circular large core optical elastomer waveguides fabricated by using direct microdispense fabrication method. Optik, 250, 168348. https://doi.org/10.1016/j.ijleo.2021.168348
  • Šaršounová, Z., Plaček, V., Prajzler, V., Masopustová, K., & Havránek, P. (2022). Influence of Optic Cable Construction Parts on Recovery Process after Gamma Irradiation. Energies, 15(2), 599. https://doi.org/10.3390/en15020599
  • Prajzler, V., Chlupatý, V., & Šaršounová, Z. (2022). The effect of gamma-ray irradiation on polycarbonate sheets. Radiation Physics and Chemistry, 196, 110100. https://doi.org/10.1016/j.radphyschem.2022.110100
  • Beyene, A. B., Su, W.-N., Tsai, H.-C., Tegegne, W. A., Chen, C.-H., Huang, C.-C., Mares, D., Prajzler, V., Huang, W.-H., & Hwang, B. J. (2022). Cu/Ag Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Label-Free Bacterial Detection. ACS Applied Nano Materials, 5(8), 11567–11576. https://doi.org/10.1021/acsanm.2c02571
  • Prajzler, V., Masopoustova, K., & Sarsounova, Z. (2022). Gamma radiation effects on plastic optical fibers. Optical Fiber Technology, 72, 102995. https://doi.org/10.1016/j.yofte.2022.102995
  • Balestra, L., Reggiani, S., Gnudi, A., Gnani, E., Dobrzyńska, J., & Vobecký, J. (2022). On the breakdown voltage temperature dependence of high-voltage power diodes passivated with diamond-like carbon. Solid-State Electronics, 193, 108284. https://doi.org/10.1016/j.sse.2022.108284
  • Dobrzynska, J. A., Vobecky, J., Gradinger, T. B., Guillon, D., & Corvasce, C. (2022). Epoxy Mold Compound Encapsulation Concept for Large-Area Power Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12(4), 602–609. https://doi.org/10.1109/TCPMT.2022.3160102
  • Vobecky, J. (2022). Fast Recovery Diodes for High-Current High- Voltage Insulated Gate Bipolar Transistors. IEEE Electron Device Letters, 43(8), 1311–1314. https://doi.org/10.1109/LED.2022.3187159
  • Šmarhák, J., & Voves, J. (2022). Electronic transport properties of compressed and stretched helicene-graphene nanostructures, a theoretical study. Physica E: Low-Dimensional Systems and Nanostructures, 141, 115111. https://doi.org/10.1016/j.physe.2021.115111
  • Sustkova, H., & Voves, J. (2022). Modeling a multiple-chain emeraldine gas sensor for NH 3 and NO 2 detection. Beilstein Journal of Nanotechnology, 13, 721–729. https://doi.org/10.3762/bjnano.13.64
  • Sustkova, H., & Voves, J. (2022). Effect of HCl and H 2 SO 4 Dilutant on Emeraldine Gas Sensor for Ammonia—Numerical Model. IEEE Sensors Letters, 6(10), 1–4. https://doi.org/10.1109/LSENS.2022.3210400

2021

  • Hazdra, P., Smrkovský, P., & Popelka, S. (2021). Radiation Defects and Carrier Lifetime in 4H‐SiC Bipolar Devices. Physica Status Solidi (a), 218(23), 2100218. https://doi.org/10.1002/pssa.202100218
  • Vobecký, J. (2021). Impact of Defect Engineering on High‐Power Devices. Physica Status Solidi (a), 218(23), 2100169. https://doi.org/10.1002/pssa.202100169
  • Veselský, K., Lahti, V., Petit, L., Prajzler, V., Šulc, J., & Jelínková, H. (2021). Influence of Y2O3 Content on Structural, Optical, Spectroscopic, and Laser Properties of Er3+, Yb3+ Co-Doped Phosphate Glasses. Materials, 14(14), 4041. https://doi.org/10.3390/ma14144041
  • Balestra, L., Reggiani, S., Gnudi, A., Gnani, E., Dobrzynska, J., & Vobecky, J. (2021). Influence of the DLC Passivation Conductivity on the Performance of Silicon High-Power Diodes Over an Extended Temperature Range. IEEE Journal of the Electron Devices Society, 9, 431–440. https://doi.org/10.1109/JEDS.2021.3073232
  • Mortet, V., Taylor, A., Lambert, N., Gedeonová, Z., Fekete, L., Lorinčik, J., Klimša, L., Kopeček, J., Hubík, P., Šobáň, Z., Laposa, A., Davydova, M., Voves, J., Pošta, A., Povolný, V., & Hazdra, P. (2021). Properties of boron-doped (113) oriented homoepitaxial diamond layers. Diamond and Related Materials, 111, 108223. https://doi.org/10.1016/j.diamond.2020.108223
  • Reggiani, S., Balestra, L., Gnudi, A., Gnani, E., Baccarani, G., Dobrzynska, J., Vobecky, J., & Tosi, C. (2021). TCAD Investigation of Differently Doped DLC Passivation for Large-Area High-Power Diodes. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(2), 2155–2162. https://doi.org/10.1109/JESTPE.2019.2921871
  • Hazdra, P., Smrkovsky, P., Vobecky, J., & Mihaila, A. (2021). Radiation Resistance of High-Voltage Silicon and 4H-SiC Power p-i-n Diodes. IEEE Transactions on Electron Devices, 68(1), 202–207. https://doi.org/10.1109/TED.2020.3038713
  • Prajzler, V., & Zavřel, J. (2021). Large core optical elastomer splitter fabricated by using 3D printing pattern. Optical and Quantum Electronics, 53(6), 337. https://doi.org/10.1007/s11082-021-02980-2
  • Prajzler, V., Arif, S., Min, K., Kim, S., & Nekvindova, P. (2021). All-polymer silk-fibroin optical planar waveguides. Optical Materials, 114, 110932. https://doi.org/10.1016/j.optmat.2021.110932
  • Šmejcký, J., Mareš, D., Barkman, O., Nekvindová, P., Prajzler, V., & Jeřábek, V. (2021). Er3+/Yb3+ doped active optic Y splitter realized by diffusion waveguides with Ag+—Na+ ion exchange. Optical and Quantum Electronics, 53(8), 440. https://doi.org/10.1007/s11082-021-03035-2
  • Kratochvíl, J., Boháček, P., Šulc, J., Němec, M., Jelínková, H., Fibrich, M., Trunda, B., Havlák, L., Jurek, K., Nikl, M., & Prajzler, V. (2021). Tm:GGAG disordered garnet crystal for 2 µm diode-pumped solid-state laser. Laser Physics Letters, 18(11), 115802. https://doi.org/10.1088/1612-202X/ac2519
  • Prajzler, V., Chlupaty, V., Kulha, P., Neruda, M., Kopp, S., & Mühlberger, M. (2021). Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique. Nanomaterials, 11(3), 724. https://doi.org/10.3390/nano11030724

2020

  • V. Prajzler, M. Neruda, and M. Květoň, “Effects of gamma rays on elastomer multimode optical channel waveguides,” J. Mater. Sci. Mater. Electron., Sep. 2020, doi: 10.1007/s10854-020-04274-x
  • M. Erzina et al., “Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs,” Sensors Actuators B Chem., vol. 308, p. 127660, Apr. 2020, doi: 10.1016/j.snb.2020.127660
  • V. Prajzler, W. Jung, K. Oh, J. Cajzl, and P. Nekvindova, “Optical properties of deoxyribonucleic acid thin layers deposited on an elastomer substrate,” Opt. Mater. Express, vol. 10, no. 2, p. 421, Feb. 2020, doi: 10.1364/ome.10.000421
  • H. Zhu et al., “IoT PCR for pandemic disease detection and its spread monitoring,” Sensors Actuators, B Chem., vol. 303, p. 127098, Jan. 2020, doi: 10.1016/j.snb.2019.127098
  • P. Vancura, J. Jakovenko, V. Kote, P. Vacula, and A. Kubacak, “Spatial systematic mismatch assessment of pre-arranged layout topologies,” Solid. State. Electron., vol. 170, p. 107822, Aug. 2020, doi: 10.1016/j.sse.2020.107822
  • A. Laposa et al., “Inkjet Seeded CVD-Grown Hydrogenated Diamond Gas Sensor under UV-LED Illumination,” IEEE Sens. J., vol. 20, no. 3, pp. 1158–1165, Feb. 2020, doi: 10.1109/JSEN.2019.2946947
  • P. Vancura, M. Havranek, and J. Jakovenko, “Improvement of column-parallel sampling for a monolithic pixel detector,” J. Instrum., vol. 15, no. 2, pp. P02014–P02014, Feb. 2020, doi: 10.1088/1748-0221/15/02/P02014
  • V. Prajzler and V. Chlupatý, “Epoxy polymer optical waveguide for micro-opto-electro-mechanical systems,” Microsyst. Technol., vol. 26, no. 9, pp. 3029–3035, Sep. 2020, doi: 10.1007/s00542-020-04921-7
  • J. Vobecky, “The Bidirectional Phase Control Thyristor,” IEEE Trans. Electron Devices, vol. 67, no. 7, pp. 2844–2849, Jul. 2020, doi: 10.1109/TED.2020.2991690

 2019

  • O. Guselnikova, S. Marque, E. Tretyakov, D. Mares, V. Jerabek, G. Audran, J. Joly, M. Trusova, V. Svorcik, O. Lyutakov, and  P. Postnikov, “Unprecedented plasmon-induced nitroxide-mediated polymerization (PI-NMP): a method for preparation of functional surfaces,” J. Mater. Chem. A, vol. 7, no. 20, pp. 12414–12419, 2019. DOI 10.1039/c9ta01630a
  • V. Prajzler and J. Zázvorka, “Polymer large core optical splitter 1 × 2 Y for high-temperature operation,” Opt. Quantum Electron., vol. 51, no. 7, p. 216, Jul. 2019. DOI 10.1007/s11082-019-1933-6
  • V. Prajzler, M. Neruda, and M. Květoň, “Flexible multimode optical elastomer waveguides,” J. Mater. Sci. Mater. Electron., vol. 30, no. 18, pp. 16983–16990, Sep. 2019. DOI 10.1007/s10854-019-02087-1
  • V. Prajzler, P. Jašek, and P. Nekvindová, “Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS),” Microsyst. Technol., vol. 25, no. 6, pp. 2249–2258, Jun. 2019. DOI 10.1007/s00542-018-4105-x
  • P. Hazdra and J. Vobecký, “Radiation Defects Created in n ‐Type 4H‐SiC by Electron Irradiation in the Energy Range of 1–10 MeV,” Phys. status solidi, vol. 216, no. 17, p. 1900312, Sep. 2019. DOI 10.1002/pssa.201900312
  • D. Barri, P. Vacula, V. Kote, J. Jakovenko, and J. Voves, “Improvements in the Electrical Performance of IC MOSFET Components Using Diamond Layout Style Versus Traditional Rectangular Layout Style Calculated by Conformal Mapping,” IEEE Trans. Electron Devices, vol. 66, no. 9, pp. 3718–3725, Sep. 2019. DOI 10.1109/TED.2019.2931090
  • H. Sustkova, A. Posta, and J. Voves, “Polyaniline emeraldine salt as an ammonia gas sensor – Comparison of quantum-based simulation with experiment,” Phys. E Low-dimensional Syst. Nanostructures, vol. 114, p. 113621, Oct. 2019. DOI 10.1016/j.physe.2019.113621
  • J. Nahlik, A. Laposa, J. Voves, J. Kroutil, J. Drahokoupil, and M. Davydova, “A High Sensitivity UV Photodetector With Inkjet Printed ZnO/Nanodiamond Active Layers,” IEEE Sens. J., vol. 19, no. 14, pp. 5587–5593, Jul. 2019. DOI 10.1109/JSEN.2019.2893572
  • V. Prajzler, M. Neruda, P. Jašek, and P. Nekvindová, “The properties of free-standing epoxy polymer multi-mode optical waveguides,” Microsyst. Technol., vol. 25, no. 1, pp. 257–264, 2019, DOI 10.1007/s00542-018-3960-9
  • Y. Kalachyova, D. Mares, V. Jerabek, R. Elashnikov, V. Švorčík, and O. Lyutakov, “Longtime stability of silver-based SERS substrate in the environment and (bio)environment with variable temperature and humidity,” Sensors Actuators, A Phys., vol. 285, pp. 566–572, 2019, DOI 10.1016/j.sna.2018.11.037

 2018

  • A. H. Bayani, J. Voves, and D. Dideban, “Effective mass approximation versus full atomistic model to calculate the output characteristics of a gate-all-around germanium nanowire field effect transistor (GAA-GeNW-FET),” Superlattices Microstruct., vol. 113, pp. 769–776, 2018. DOI 10.1016/j.spmi.2017.12.019
  • J. Kroutil, A. Laposa, J. Voves, M. Davydova, J. Náhlík, P. Kulha, M. Husák, “Performance Evaluation of Low-Cost Flexible Gas Sensor Array With Nanocomposite Polyaniline Films,” IEEE Sens. J., vol. 18, no. 9, pp. 3759–3766, May 2018. DOI 10.1109/JSEN.2018.2811461
  • M. Davydova, A. Laposa, J. Šmarhák, A. Kromka, N. Neyková, J. Náhlík, J. Drahokoupil, J. Voves, “Gas-sensing behaviour of ZnO/diamond nanostructures,” Beilstein J. Nanotechnol., vol. 9, no. 1, 2018. DOI 10.3762/bjnano.9.4
  • V. Prajzler, K. Min, S. Kim, and P. Nekvindova, “The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum,” Materials (Basel)., vol. 11, no. 1, 2018, DOI 10.3390/ma11010112
  • V. Prajzler, M. Neruda, and P. Nekvindová, “Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides,” J. Mater. Sci. Mater. Electron., vol. 29, no. 7, pp. 5878–5884, 2018, DOI 10.1007/s10854-018-8560-z
  • R. Elashnikov, A. Trelin, J. Otta, P. Fitl, D. Mares, V. Jerabek, V. Svorcik, and O. Lyutakov, “Laser patterning of transparent polymers assisted by plasmon excitation,” Soft Matter, vol. 14, no. 23, pp. 4860–4865, 2018, DOI 10.1039/c8sm00418h 

2017

  • S. Popelka, P. Hazdra, and V. Záhlava, “Operation of 4H-SiC high voltage normally-OFF V-JFET in radiation hard conditions: Simulations and experiment,” Microelectron. Reliab., vol. 74, pp. 58–66, 2017. DOI 10.1016/j.microrel.2017.05.015
  • P. Hazdra and S. Popelka, “Radiation resistance of wide-bandgap semiconductor power transistors,” Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 4, 2017. DOI 10.1002/pssa.201600447
  • A. H. Bayani, D. Dideban, J. Voves, and N. Moezi, “Investigation of sub-10nm cylindrical surrounding gate germanium nanowire field effect transistor with different cross-section areas,” Superlattices Microstruct., vol. 105, pp. 110–116, 2017. DOI 10.1016/j.spmi.2017.03.020
  • V. Prajzler and R. Mastera, “Wavelength division multiplexing module with large core optical polymer planar splitter and multilayered dielectric filters,” Opt. Quantum Electron., vol. 49, no. 4, pp. 1–11, 2017, DOI 10.1007/s11082-017-0960-4
  • Prajzler, P. Kulha, M. Knietel, and H. Enser, “Large core plastic planar optical splitter fabricated by 3D printing technology,” Opt. Commun., vol. 400, no. March, pp. 38–42, 2017, DOI 10.1016/j.optcom.2017.04.070
  • V. Prajzler, P. Nekvindova, J. Spirkova, and M. Novotny, “The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique,” J. Mater. Sci. Mater. Electron., vol. 28, no. 11, pp. 7951–7961, 2017, DOI 10.1007/s10854-017-6498-1
  • Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys., vol. 19, no. 22, pp. 14761–14769, 2017, DOI 10.1039/c7cp01828b

 2016

  • V. Prajzler, M. Knietel, and R. Maštera, “Large core optical planar splitter for visible and infrared region,” Opt. Quantum Electron., vol. 48, no. 2, pp. 1–9, 2016, DOI 10.1007/s11082-016-0444-y
  • D. Mareš and V. Jeřábek, “Polymer waveguide Bragg gratings made by laser patterning technique,” Opt. Quantum Electron., vol. 48, no. 2, pp. 1–10, 2016, DOI 10.1007/s11082-016-0438-9
  • Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “The effect of silver grating and nanoparticles grafting for LSP-SPP coupling and SERS response intensification,” J. Phys. Chem. C, vol. 120, no. 19, pp. 10569–10577, 2016, DOI 10.1021/acs.jpcc.6b01587

 2015

  • J. Vobecký, P. Hazdra, S. Popelka, and R. K. Sharma, “Impact of electron irradiation on the ON-state characteristics of a 4H-SiC JBS diode,” IEEE Trans. Electron Devices, vol. 62, no. 6, pp. 1964–1969, 2015. DOI 10.1109/TED.2015.2421503
  • R. K. Sharma, P. Hazdra, and S. Popelka, “The effect of light ion irradiation on 4H-SiC MPS power diode characteristics: Experiment and simulation,” IEEE Trans. Nucl. Sci., vol. 62, no. 2, pp. 534–541, 2015. DOI 10.1109/TNS.2015.2395712

 2014

  • J. Vobecky, P. Hazdra, S. Popelka, R. Sharma, and V. Zahlava, “Effect of Neutron Irradiation on High Voltage 4H-SiC Vertical JFET Characteristics: Characterization and Modeling,” IEEE Trans. Nucl. Sci., vol. 61, no. 6, pp. 3030–3036, 2014. DOI 10.1109/TNS.2014.2358957
  • P. Hazdra, V. Záhlava, and J. Vobecký, “Point defects in 4H-SiC epilayers introduced by neutron irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 327, no. 1, pp. 124–127, 2014. DOI 10.1016/j.nimb.2013.09.051
  • J. Vobecký, P. Hazdra, V. Záhlava, A. Mihaila, and M. Berthou, “ON-state characteristics of proton irradiated 4H-SiC Schottky diode: The calibration of model parameters for device simulation,” Solid. State. Electron., vol. 94, pp. 32–38, 2014. DOI 10.1016/j.sse.2014.02.004
  • I. Hrebíková, L. Jelínek, J. Voves, J. D. Baena, “A Perfect Lens for Ballistic Electrons: An Electron-Light Wave Analogy”, Photonics and Nanostructures-Fundamentals and Applications, vol. 12, no. 1, p. 9-15, 2014, DOI 10.1016/j.photonics.2013.08.005

 2013

  • V. Prajzler, M. Varga, P. Nekvindova, Z. Remes, and A. Kromka, “Design and investigation of properties of nanocrystalline diamond optical planar waveguides,” Opt. Express, vol. 21, no. 7, p. 8417, 2013, DOI 10.1364/oe.21.008417